Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition.
The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A / Segura, I.; Lange, C.; Knevels, E.; Moskalyuk, A.; Pulizzi, R.; Eelen, G.; Chaze, T.; Tudor, C.; Boulegue, C.; Holt, M.; Daelemans, D.; Matondo, M.; Ghesquiere, B.; Giugliano, M.; Ruiz de Almodovar, C.; Dewerchin, M.; Carmeliet, P.. - In: CELL REPORTS. - ISSN 2211-1247. - 14:11(2016), pp. 2653-2667. [10.1016/j.celrep.2016.02.047]
The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A
Giugliano, M.;
2016-01-01
Abstract
Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition.File | Dimensione | Formato | |
---|---|---|---|
segura2016.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.16 MB
Formato
Adobe PDF
|
6.16 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S2211124716301681-mmc1.pdf
accesso aperto
Descrizione: Supplemental material
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
4.49 MB
Formato
Adobe PDF
|
4.49 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S2211124716301681-mmc2-compresso.pdf
accesso aperto
Descrizione: Supplemental material
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
3.79 MB
Formato
Adobe PDF
|
3.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.