An integrable model subjected to a periodic driving gives rise generally to a nonintegrable Floquet Hamiltonian. Here we show that the Floquet Hamiltonian of the integrable Lieb-Liniger model in the presence of a linear potential with a periodic time-dependent strength is instead integrable and its quasienergies can be determined using the Bethe ansatz approach. We discuss various aspects of the dynamics of the system at stroboscopic times and we also propose a possible experimental realization of the periodically driven tilting in terms of a shaken rotated ring potential.

Integrable Floquet Hamiltonian for a Periodically Tilted 1D Gas / Colcelli, A.; Mussardo, G.; Sierra, G.; Trombettoni, A.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 123:13(2019), pp. 1-6.

Integrable Floquet Hamiltonian for a Periodically Tilted 1D Gas

Colcelli A.;Mussardo G.;Trombettoni A.
2019

Abstract

An integrable model subjected to a periodic driving gives rise generally to a nonintegrable Floquet Hamiltonian. Here we show that the Floquet Hamiltonian of the integrable Lieb-Liniger model in the presence of a linear potential with a periodic time-dependent strength is instead integrable and its quasienergies can be determined using the Bethe ansatz approach. We discuss various aspects of the dynamics of the system at stroboscopic times and we also propose a possible experimental realization of the periodically driven tilting in terms of a shaken rotated ring potential.
123
13
1
6
130401
http://harvest.aps.org/bagit/articles/10.1103/PhysRevLett.123.130401/apsxml
https://arxiv.org/abs/1902.07809
https://ui.adsabs.harvard.edu/abs/2019PhRvL.123m0401C/abstract
Colcelli, A.; Mussardo, G.; Sierra, G.; Trombettoni, A.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.123.130401.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 544.23 kB
Formato Adobe PDF
544.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/104300
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact