An integrable model subjected to a periodic driving gives rise generally to a nonintegrable Floquet Hamiltonian. Here we show that the Floquet Hamiltonian of the integrable Lieb-Liniger model in the presence of a linear potential with a periodic time-dependent strength is instead integrable and its quasienergies can be determined using the Bethe ansatz approach. We discuss various aspects of the dynamics of the system at stroboscopic times and we also propose a possible experimental realization of the periodically driven tilting in terms of a shaken rotated ring potential.
Integrable Floquet Hamiltonian for a Periodically Tilted 1D Gas / Colcelli, A.; Mussardo, G.; Sierra, G.; Trombettoni, A.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 123:13(2019), pp. 1-6.
Integrable Floquet Hamiltonian for a Periodically Tilted 1D Gas
Colcelli A.;Mussardo G.;Trombettoni A.
2019-01-01
Abstract
An integrable model subjected to a periodic driving gives rise generally to a nonintegrable Floquet Hamiltonian. Here we show that the Floquet Hamiltonian of the integrable Lieb-Liniger model in the presence of a linear potential with a periodic time-dependent strength is instead integrable and its quasienergies can be determined using the Bethe ansatz approach. We discuss various aspects of the dynamics of the system at stroboscopic times and we also propose a possible experimental realization of the periodically driven tilting in terms of a shaken rotated ring potential.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.123.130401.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
544.23 kB
Formato
Adobe PDF
|
544.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.