We establish a new extremal property of the classical Chebyshev polynomials in the context of best rank-one approximation of tensors. We also give some necessary conditions for a tensor to be a minimizer of the ratio of spectral and Frobenius norms.

Chebyshev Polynomials and Best Rank-one Approximation Ratio / Agrachev, Andrey; Kozhasov, Khazhgali; Uschmajew, André. - In: SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS. - ISSN 0895-4798. - 41:1(2020), pp. 308-331. [10.1137/19M1269713]

Chebyshev Polynomials and Best Rank-one Approximation Ratio

Agrachev, Andrey;Kozhasov, Khazhgali;
2020

Abstract

We establish a new extremal property of the classical Chebyshev polynomials in the context of best rank-one approximation of tensors. We also give some necessary conditions for a tensor to be a minimizer of the ratio of spectral and Frobenius norms.
41
1
308
331
https://arxiv.org/abs/1904.00488
Agrachev, Andrey; Kozhasov, Khazhgali; Uschmajew, André
File in questo prodotto:
File Dimensione Formato  
chebyshev.pdf

accesso aperto

Descrizione: Preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 482.89 kB
Formato Adobe PDF
482.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/108874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact