Motoneuron activity is modulated by histamine receptors. While H1 and H2 receptors have been widely explored, H3 histamine receptors (H3Rs) have not been sufficiently characterized. This paper targets the effects of the selective activation of H3Rs and their expression on the membranes of large ventral horn cells. The application of selective pharmacological agents to spinal cords isolated from neonatal rats was used to identify the presence of functional H3Rs on the membrane of physiologically identified lumbar motoneurons. Intra and extracellular recordings revealed that H3R agonist, α-methylhistamine, depolarized both single motoneurons and ventral roots, even in the presence of tetrodotoxin, an effect prevented by H3R antagonist, thioperamide. Finally, immunohistochemistry located the expression of H3Rs on a subpopulation of large cells in lamina IX. This study identifies H3Rs as a new exploitable pharmacological target against motor disturbances.
Histamine H3 Receptors Expressed in Ventral Horns Modulate Spinal Motor Output / Coslovich, T.; Della Mora, A.; D'Angelo, G.; Ortolani, F.; Taccola, G.. - In: CELLULAR AND MOLECULAR NEUROBIOLOGY. - ISSN 0272-4340. - 41:(2021), pp. 185-190. [10.1007/s10571-020-00831-4]
Histamine H3 Receptors Expressed in Ventral Horns Modulate Spinal Motor Output
Coslovich T.;Taccola G.
2021-01-01
Abstract
Motoneuron activity is modulated by histamine receptors. While H1 and H2 receptors have been widely explored, H3 histamine receptors (H3Rs) have not been sufficiently characterized. This paper targets the effects of the selective activation of H3Rs and their expression on the membranes of large ventral horn cells. The application of selective pharmacological agents to spinal cords isolated from neonatal rats was used to identify the presence of functional H3Rs on the membrane of physiologically identified lumbar motoneurons. Intra and extracellular recordings revealed that H3R agonist, α-methylhistamine, depolarized both single motoneurons and ventral roots, even in the presence of tetrodotoxin, an effect prevented by H3R antagonist, thioperamide. Finally, immunohistochemistry located the expression of H3Rs on a subpopulation of large cells in lamina IX. This study identifies H3Rs as a new exploitable pharmacological target against motor disturbances.File | Dimensione | Formato | |
---|---|---|---|
Coslovich2020_Article_HistamineH3ReceptorsExpressedI.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Coslovich et al._CEMN_2020.pdf
Open Access dal 26/03/2021
Descrizione: Postprint
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.