This paper investigates the hydrodynamic performances of an smoothed particle hydrodynamics (SPH) code incorporating an artificial heat conductivity term in which the adopted signal velocity is applicable when gravity is present. To this end, we analyze results from simulations produced using a suite of standard hydrodynamical test problems. In accordance with previous findings, we show that the performances of SPH in describing the development of Kelvin-Helmholtz instabilities depend strongly on both the consistency of the initial condition set-up and the leading error in the momentum equation due to incomplete kernel sampling. In contrast, the presence of artificial conductivity does not significantly affect the results. An error and stability analysis shows that the quartic B-spline kernel (M-5) possesses very good stability properties and so we propose its use with a large neighbor number, between similar to 50 (2D) to similar to 100 (3D), to improve convergence in simulation results without being affected by the so-called clumping instability. Moreover, the results of the Sod shock tube demonstrate that to obtain simulation profiles in accord with the analytic solution, for simulations employing kernels with a non-zero first derivative at the origin, it is necessary to use a much larger number of neighbors than in the case of the M5 runs. Our SPH simulations of the blob test show that in order to achieve blob disruption it is necessary to include an artificial conductivity term. However, we find that in the regime of strong supersonic flows an appropriate limiting condition, which depends on the Prandtl number, must be imposed on the artificial conductivity SPH coefficients in order to avoid an unphysical amount of heat diffusion. Our results from hydrodynamic simulations that include self-gravity show profiles of hydrodynamic variables that are in much better agreement with those produced using mesh-based codes. In particular, the final levels of core entropies in cosmological simulations of galaxy clusters are consistent with those found using AMR codes. This demonstrates that the proposed diffusion scheme is capable of mimicking the process of entropy mixing that is produced during structure formation because of the diffusion caused by turbulence. Finally, the results of our Rayleigh-Taylor instability test demonstrate that in the regime of very subsonic flows the code still has several difficulties in the treatment of hydrodynamic instabilities. These problems are intrinsic to the way in which standard SPH gradients are calculated and not to the implementation of the artificial conductivity term. To overcome these difficulties, several numerical schemes have been proposed that, if coupled with the SPH implementation presented in this paper, could solve the issues that have recently been addressed in investigating SPH performances to model subsonic turbulence. © ESO, 2012.

Hydrodynamic capabilities of an SPH code incorporating an artificial conductivity term with a gravity-based signal velocity

Valdarnini, Riccardo
2012-01-01

Abstract

This paper investigates the hydrodynamic performances of an smoothed particle hydrodynamics (SPH) code incorporating an artificial heat conductivity term in which the adopted signal velocity is applicable when gravity is present. To this end, we analyze results from simulations produced using a suite of standard hydrodynamical test problems. In accordance with previous findings, we show that the performances of SPH in describing the development of Kelvin-Helmholtz instabilities depend strongly on both the consistency of the initial condition set-up and the leading error in the momentum equation due to incomplete kernel sampling. In contrast, the presence of artificial conductivity does not significantly affect the results. An error and stability analysis shows that the quartic B-spline kernel (M-5) possesses very good stability properties and so we propose its use with a large neighbor number, between similar to 50 (2D) to similar to 100 (3D), to improve convergence in simulation results without being affected by the so-called clumping instability. Moreover, the results of the Sod shock tube demonstrate that to obtain simulation profiles in accord with the analytic solution, for simulations employing kernels with a non-zero first derivative at the origin, it is necessary to use a much larger number of neighbors than in the case of the M5 runs. Our SPH simulations of the blob test show that in order to achieve blob disruption it is necessary to include an artificial conductivity term. However, we find that in the regime of strong supersonic flows an appropriate limiting condition, which depends on the Prandtl number, must be imposed on the artificial conductivity SPH coefficients in order to avoid an unphysical amount of heat diffusion. Our results from hydrodynamic simulations that include self-gravity show profiles of hydrodynamic variables that are in much better agreement with those produced using mesh-based codes. In particular, the final levels of core entropies in cosmological simulations of galaxy clusters are consistent with those found using AMR codes. This demonstrates that the proposed diffusion scheme is capable of mimicking the process of entropy mixing that is produced during structure formation because of the diffusion caused by turbulence. Finally, the results of our Rayleigh-Taylor instability test demonstrate that in the regime of very subsonic flows the code still has several difficulties in the treatment of hydrodynamic instabilities. These problems are intrinsic to the way in which standard SPH gradients are calculated and not to the implementation of the artificial conductivity term. To overcome these difficulties, several numerical schemes have been proposed that, if coupled with the SPH implementation presented in this paper, could solve the issues that have recently been addressed in investigating SPH performances to model subsonic turbulence. © ESO, 2012.
2012
546
1
25
A45
10.1051/0004-6361/201219715
https://arxiv.org/abs/1207.6980
Valdarnini, Riccardo
File in questo prodotto:
File Dimensione Formato  
V12.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact