We consider the von Neumann and Renyi entropies of the one-dimensional quarter-filled Hubbard model. We observe that for periodic boundary conditions the entropies exhibit an unexpected dependence on system size: for L = 4 mod 8 the results are in agreement with expectations based on conformal field theory, while for L = 0 mod 8 additional contributions arise. We explain this observation in terms of a shell-filling effect and develop a conformal field theory approach to calculate the extra term in the entropies. Similar shell-filling effects in entanglement entropies are expected to be present in higher dimensions and for other multicomponent systems.

Shell-Filling Effect in the Entanglement Entropies of Spinful Fermions

Calabrese, Pasquale
2013-01-01

Abstract

We consider the von Neumann and Renyi entropies of the one-dimensional quarter-filled Hubbard model. We observe that for periodic boundary conditions the entropies exhibit an unexpected dependence on system size: for L = 4 mod 8 the results are in agreement with expectations based on conformal field theory, while for L = 0 mod 8 additional contributions arise. We explain this observation in terms of a shell-filling effect and develop a conformal field theory approach to calculate the extra term in the entropies. Similar shell-filling effects in entanglement entropies are expected to be present in higher dimensions and for other multicomponent systems.
2013
110
11
1
5
115701
https://arxiv.org/abs/1211.2474
Fabian, H. L. Essler; Andreas, M. Lauchli; Calabrese, Pasquale
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.110.115701.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 302.67 kB
Formato Adobe PDF
302.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
social impact