Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded.
Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light / Acernese, F.; Agathos, M.; Aiello, L.; Allocca, A.; Amato, A.; Ansoldi, S.; Antier, S.; Arene, M.; Arnaud, N.; Ascenzi, S.; Astone, P.; Aubin, F.; Babak, S.; Bacon, P.; Badaracco, F.; Bader, M. K. M.; Baird, J.; Baldaccini, F.; Ballardin, G.; Baltus, G.; Barbieri, C.; Barneo, P.; Barone, F.; Barsuglia, M.; Barta, D.; Basti, A.; Bawaj, M.; Bazzan, M.; Bejger, M.; Belahcene, I.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Bischi, M.; Bitossi, M.; Bizouard, M. A.; Bobba, F.; Boer, M.; Bogaert, G.; Bondu, F.; Bonnand, R.; Boom, B. A.; Boschi, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Branchesi, M.; Breschi, M.; Briant, T.; Brighenti, F.; Brillet, A.; Brooks, J.; Bruno, G.; Bulik, T.; Bulten, H. J.; Buskulic, D.; Cagnoli, G.; Calloni, E.; Canepa, M.; Carapella, G.; Carbognani, F.; Carullo, G.; Casanueva Diaz, J.; Casentini, C.; Castaneda, J.; Caudill, S.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cerda-Duran, P.; Cesarini, E.; Chaibi, O.; Chassande-Mottin, E.; Chiadini, F.; Chierici, R.; Chincarini, A.; Chiummo, A.; Christensen, N.; Chua, S.; Ciani, G.; Ciecielag, P.; Cieslar, M.; Ciolfi, R.; Cipriano, F.; Cirone, A.; Clesse, S.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colpi, M.; Conti, L.; Cordero-Carrion, I.; Corezzi, S.; Corre, D.; Cortese, S.; Coulon, J. -P.; Croquette, M.; Cudell, J. -R.; Cuoco, E.; Curylo, M.; D'Angelo, B.; D'Antonio, S.; Dattilo, V.; Davier, M.; Degallaix, J.; De Laurentis, M.; Deleglise, S.; Del Pozzo, W.; De Pietri, R.; De Rosa, R.; De Rossi, C.; Dietrich, T.; Di Fiore, L.; Di Giorgio, C.; Di Giovanni, F.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Drago, M.; Ducoin, J. -G.; Durante, O.; D'Urso, D.; Eisenmann, M.; Errico, L.; Estevez, D.; Fafone, V.; Farinon, S.; Feng, F.; Fenyvesi, E.; Ferrante, I.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fittipaldi, R.; Fiumara, V.; Flaminio, R.; Font, J. A.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frey, V.; Fronze, G.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, A.; Giacomazzo, B.; Gosselin, M.; Gouaty, R.; Grado, A.; Granata, M.; Greco, G.; Grignani, G.; Grimaldi, A.; Grimm, S. J.; Gruning, P.; Guidi, G. M.; Guixe, G.; Guo, Y.; Gupta, P.; Halim, O.; Harder, T.; Harms, J.; Heidmann, A.; Heitmann, H.; Hello, P.; Hemming, G.; Hennes, E.; Hinderer, T.; Hofman, D.; Huet, D.; Hui, V.; Idzkowski, B.; Iess, A.; Intini, G.; Isac, J. -M.; Jacqmin, T.; Jaranowski, P.; Jonker, R. J. G.; Katsanevas, S.; Kefelian, F.; Khan, I.; Khetan, N.; Koekoek, G.; Koley, S.; Krolak, A.; Kutynia, A.; Laghi, D.; Lamberts, A.; La Rosa, I.; Lartaux-Vollard, A.; Lazzaro, C.; Leaci, P.; Leroy, N.; Letendre, N.; Linde, F.; Llorens-Monteagudo, M.; Longo, A.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Lumaca, D.; Macquet, A.; Majorana, E.; Maksimovic, I.; Man, N.; Mangano, V.; Mantovani, M.; Mapelli, M.; Marchesoni, F.; Marion, F.; Marquina, A.; Marsat, S.; Martelli, F.; Martinez, V.; Masserot, A.; Mastrogiovanni, S.; Mejuto Villa, E.; Mereni, L.; Merzougui, M.; Metzdorff, R.; Miani, A.; Michel, C.; Milano, L.; Miller, A.; Milotti, E.; Minazzoli, O.; Minenkov, Y.; Montani, M.; Morawski, F.; Mours, B.; Muciaccia, F.; Nagar, A.; Nardecchia, I.; Naticchioni, L.; Neilson, J.; Nelemans, G.; Nguyen, C.; Nichols, D.; Nissanke, S.; Nocera, F.; Oganesyan, G.; Olivetto, C.; Pagano, G.; Pagliaroli, G.; Palomba, C.; Pang, P. T. H.; Pannarale, F.; Paoletti, F.; Paoli, A.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Perego, A.; Pegoraro, M.; Perigois, C.; Perreca, A.; Perries, S.; Phukon, K. S.; Piccinni, O. J.; Pichot, M.; Piendibene, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Piotrzkowski, K.; Plastino, W.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Prevedelli, M.; Principe, M.; Prodi, G. A.; Punturo, M.; Puppo, P.; Raaijmakers, G.; Radulesco, N.; Rapagnani, P.; Razzano, M.; Regimbau, T.; Rei, L.; Rettegno, P.; Ricci, F.; Riemenschneider, G.; Robinet, F.; Rocchi, A.; Rolland, L.; Romanelli, M.; Romano, R.; Rosinska, D.; Ruggi, P.; Salafia, O. S.; Salconi, L.; Samajdar, A.; Sanchis-Gual, N.; Santos, E.; Sassolas, B.; Sauter, O.; Sayah, S.; Sentenac, D.; Sequino, V.; Sharma, A.; Sieniawska, M.; Singh, N.; Singhal, A.; Sipala, V.; Sordini, V.; Sorrentino, F.; Spera, M.; Stachie, C.; Steer, D. A.; Stratta, G.; Sur, A.; Swinkels, B. L.; Tacca, M.; Tanasijczuk, A. J.; Tapia San Martin, E. N.; Tiwari, S.; Tonelli, M.; Torres-Forne, A.; Tosta E Melo, I.; Travasso, F.; Tringali, M. C.; Trovato, A.; Tsang, K. W.; Turconi, M.; Valentini, M.; Van Bakel, N.; Van Beuzekom, M.; Van Den Brand, J. F. J.; Van Den Broeck, C.; Van Der Schaaf, L.; Vardaro, M.; Vasuth, M.; Vedovato, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinet, J. -Y.; Vocca, H.; Walet, R.; Was, M.; Zadrozny, A.; Zelenova, T.; Zendri, J. -P.; Vahlbruch, H.; Mehmet, M.; Luck, H.; Danzmann, K.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 123:23(2019), pp. 231108-1-231108-10. [10.1103/PhysRevLett.123.231108]
Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light
Spera M.;
2019-01-01
Abstract
Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.123.231108.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.