We study the energy transitions and time scales, in the Fermi-Pasta-Ulam oscillator chain, at which the energy E, initially in a single or small group of low-frequency modes, is distributed among modes. The energy transitions, with increasing energy, are classified. At low energy the linear parts of the energies are distributed in a geometrically decreasing series Eh=ρ2Eh-2γ, with γ the mode in which most of the initial energy is placed and ρ=(3βEγ)/(4πγ). A transition occurs at R6βEγ(N+1)/π2∼1, with N the number of oscillators and β the quartic coupling constant. Above this transition there is strong local coupling among neighboring modes with a characteristic resonant frequency Ωb∼4βγEγ/N2. There is a second transition at a critial energy βEc∼0.3, above which stochasticity among low-frequency resonances transfers energy into high-frequency resonances by the Arnold diffusion mechanism. Above this transition we numerically determine a universal scaling for the time scale to approach equipartition among the modes. The universal time scale is qualitatively explained in terms of the driving time scale τb=2π/Ωb and a diffusive filling time. © 1995 The American Physical Society.

Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain / Deluca, J.; Lichtenberg, A. J.; Ruffo, S.. - In: PHYSICAL REVIEW E. - ISSN 1063-651X. - 51:4(1995), pp. 2877-2885. [10.1103/PhysRevE.51.2877]

Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain

Ruffo S.
1995-01-01

Abstract

We study the energy transitions and time scales, in the Fermi-Pasta-Ulam oscillator chain, at which the energy E, initially in a single or small group of low-frequency modes, is distributed among modes. The energy transitions, with increasing energy, are classified. At low energy the linear parts of the energies are distributed in a geometrically decreasing series Eh=ρ2Eh-2γ, with γ the mode in which most of the initial energy is placed and ρ=(3βEγ)/(4πγ). A transition occurs at R6βEγ(N+1)/π2∼1, with N the number of oscillators and β the quartic coupling constant. Above this transition there is strong local coupling among neighboring modes with a characteristic resonant frequency Ωb∼4βγEγ/N2. There is a second transition at a critial energy βEc∼0.3, above which stochasticity among low-frequency resonances transfers energy into high-frequency resonances by the Arnold diffusion mechanism. Above this transition we numerically determine a universal scaling for the time scale to approach equipartition among the modes. The universal time scale is qualitatively explained in terms of the driving time scale τb=2π/Ωb and a diffusive filling time. © 1995 The American Physical Society.
1995
51
4
2877
2885
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.51.2877
Deluca, J.; Lichtenberg, A. J.; Ruffo, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/116527
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 69
social impact