The existence of interesting multiplicative cohomology theories for orbifolds was initially suggested by string theorists. Orbifold products have been intensely studied by mathematicians for the last fifteen years. In this paper we focus on the virtual orbifold product that was first introduced in Lupercio et al. (2007). We construct a categorification of the virtual orbifold product that leverages the geometry of derived loop stacks. After work of Ben-Zvi Francis and Nadler, this reveals connections between virtual orbifold products and Drinfeld centers of monoidal categories, thus answering a question of Hinich.
Derived loop stacks and categorification of orbifold products / Scherotzke, S.; Sibilla, N.. - In: JOURNAL OF NONCOMMUTATIVE GEOMETRY. - ISSN 1661-6952. - 13:3(2019), pp. 963-983. [10.4171/JNCG/342]
Derived loop stacks and categorification of orbifold products
Sibilla N.
2019-01-01
Abstract
The existence of interesting multiplicative cohomology theories for orbifolds was initially suggested by string theorists. Orbifold products have been intensely studied by mathematicians for the last fifteen years. In this paper we focus on the virtual orbifold product that was first introduced in Lupercio et al. (2007). We construct a categorification of the virtual orbifold product that leverages the geometry of derived loop stacks. After work of Ben-Zvi Francis and Nadler, this reveals connections between virtual orbifold products and Drinfeld centers of monoidal categories, thus answering a question of Hinich.File | Dimensione | Formato | |
---|---|---|---|
Categorified.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
343.36 kB
Formato
Adobe PDF
|
343.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.