Gravitational theories differing from general relativity may explain the accelerated expansion of the Universe without a cosmological constant. However, to pass local gravitational tests, a "screening mechanism"is needed to suppress, on small scales, the fifth force driving the cosmological acceleration. We consider the simplest of these theories, i.e., a scalar-tensor theory with first-order derivative self-interactions, and study isolated (static and spherically symmetric) nonrelativistic and relativistic stars. We produce screened solutions and use them as initial data for nonlinear numerical evolutions in spherical symmetry. We find that these solutions are stable under large initial perturbations, as long as they do not cause gravitational collapse. When gravitational collapse is triggered, the characteristic speeds of the scalar evolution equation diverge, even before apparent black-hole or sound horizons form. This casts doubts on whether the dynamical evolution of screened stars may be predicted in these effective field theories.
Dynamics of Screening in Modified Gravity / Ter Haar, C. J. E.; Bezares, Miguel; Crisostomi, Marco; Barausse, Enrico; Palenzuela, Carlos. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 126:9(2021), pp. 1-6. [10.1103/PhysRevLett.126.091102]
Dynamics of Screening in Modified Gravity
Ter Haar, C. J. E.;Bezares, Miguel;Crisostomi, Marco;Barausse, Enrico;
2021-01-01
Abstract
Gravitational theories differing from general relativity may explain the accelerated expansion of the Universe without a cosmological constant. However, to pass local gravitational tests, a "screening mechanism"is needed to suppress, on small scales, the fifth force driving the cosmological acceleration. We consider the simplest of these theories, i.e., a scalar-tensor theory with first-order derivative self-interactions, and study isolated (static and spherically symmetric) nonrelativistic and relativistic stars. We produce screened solutions and use them as initial data for nonlinear numerical evolutions in spherical symmetry. We find that these solutions are stable under large initial perturbations, as long as they do not cause gravitational collapse. When gravitational collapse is triggered, the characteristic speeds of the scalar evolution equation diverge, even before apparent black-hole or sound horizons form. This casts doubts on whether the dynamical evolution of screened stars may be predicted in these effective field theories.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.126.091102.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
567.9 kB
Formato
Adobe PDF
|
567.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.