We present a perturbed subspace iteration algorithm to approximate the lowermost eigenvalue cluster of an elliptic eigenvalue problem. As a prototype, we consider the Laplace eigenvalue problem posed in a polygonal domain. The algorithm is motivated by the analysis of inexact (perturbed) inverse iteration algorithms in numerical linear algebra. We couple the perturbed inverse iteration approach with mesh refinement strategy based on residual estimators. We demonstrate our approach on model problems in two and three dimensions.

Smoothed-adaptive perturbed inverse iteration for elliptic eigenvalue problems / Giani, S.; Grubisic, L.; Heltai, L.; Mulita, O.. - In: COMPUTATIONAL METHODS IN APPLIED MATHEMATICS. - ISSN 1609-4840. - 21:2(2021), pp. 385-405. [10.1515/cmam-2020-0027]

Smoothed-adaptive perturbed inverse iteration for elliptic eigenvalue problems

Heltai L.;Mulita O.
2021-01-01

Abstract

We present a perturbed subspace iteration algorithm to approximate the lowermost eigenvalue cluster of an elliptic eigenvalue problem. As a prototype, we consider the Laplace eigenvalue problem posed in a polygonal domain. The algorithm is motivated by the analysis of inexact (perturbed) inverse iteration algorithms in numerical linear algebra. We couple the perturbed inverse iteration approach with mesh refinement strategy based on residual estimators. We demonstrate our approach on model problems in two and three dimensions.
2021
21
2
385
405
Giani, S.; Grubisic, L.; Heltai, L.; Mulita, O.
File in questo prodotto:
File Dimensione Formato  
10.1515_cmam-2020-0027.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 9.06 MB
Formato Adobe PDF
9.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/121409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact