We define a topological quantum membrane theory on a seven dimensional manifold of G(2) holonomy. We describe in detail the path integral evaluation for membrane geometries given by circle bundles over Riemann surfaces. We show that when the target space is CY3 x S-1 quantum amplitudes of non-local observables of membranes wrapping the circle reduce to the A-model amplitudes. In particular for genus zero we show that our model computes the Gopakumar-Vafa invariants. Moreover, for membranes wrapping calibrated homology spheres in the CY3, we find that the amplitudes of our model are related to Joyce invariants.
Computing amplitudes in topological M-theory / Bonelli, G.; Tanzini, A.; Zabzine, M.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2007:3(2007), pp. 1-23. [10.1088/1126-6708/2007/03/023]
Computing amplitudes in topological M-theory
Bonelli, G.;Tanzini, A.;
2007-01-01
Abstract
We define a topological quantum membrane theory on a seven dimensional manifold of G(2) holonomy. We describe in detail the path integral evaluation for membrane geometries given by circle bundles over Riemann surfaces. We show that when the target space is CY3 x S-1 quantum amplitudes of non-local observables of membranes wrapping the circle reduce to the A-model amplitudes. In particular for genus zero we show that our model computes the Gopakumar-Vafa invariants. Moreover, for membranes wrapping calibrated homology spheres in the CY3, we find that the amplitudes of our model are related to Joyce invariants.File | Dimensione | Formato | |
---|---|---|---|
computing.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
311.61 kB
Formato
Adobe PDF
|
311.61 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.