We study the discrete flows generated by the symmetry group of the BPS quivers for Calabi–Yau geometries describing five-dimensional superconformal quantum field theories on a circle. These flows naturally describe the BPS particle spectrum of such theories and at the same time generate bilinear equations of q-difference type which, in the rank one case, are q-Painlevé equations. The solutions of these equations are shown to be given by grand canonical topological string partition functions which we identify with τ-functions of the cluster algebra associated to the quiver. We exemplify our construction in the case corresponding to five-dimensional SU(2) pure super Yang–Mills and Nf= 2 on a circle.

BPS Quivers of Five-Dimensional SCFTs, Topological Strings and q-Painlevé Equations / Bonelli, G.; Delmonte, F.; Tanzini, A.. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 22:8(2021), pp. 2721-2773. [10.1007/s00023-021-01034-3]

BPS Quivers of Five-Dimensional SCFTs, Topological Strings and q-Painlevé Equations

Bonelli G.
;
Tanzini A.
2021-01-01

Abstract

We study the discrete flows generated by the symmetry group of the BPS quivers for Calabi–Yau geometries describing five-dimensional superconformal quantum field theories on a circle. These flows naturally describe the BPS particle spectrum of such theories and at the same time generate bilinear equations of q-difference type which, in the rank one case, are q-Painlevé equations. The solutions of these equations are shown to be given by grand canonical topological string partition functions which we identify with τ-functions of the cluster algebra associated to the quiver. We exemplify our construction in the case corresponding to five-dimensional SU(2) pure super Yang–Mills and Nf= 2 on a circle.
2021
22
8
2721
2773
10.1007/s00023-021-01034-3
https://arxiv.org/abs/2007.11596
Bonelli, G.; Delmonte, F.; Tanzini, A.
File in questo prodotto:
File Dimensione Formato  
Bonelli2021_Article_BPSQuiversOfFive-DimensionalSC.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/126215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact