We study a system of one-dimensional interacting quantum particles subjected to a time-periodic potential linear in space. After discussing the cases of driven one- A nd two-particle systems, we derive the analogous results for the many-particle case in the presence of a general interaction two-body potential and the corresponding Floquet Hamiltonian. When the undriven model is integrable, the Floquet Hamiltonian is shown to be integrable too. We determine the micromotion operator and the expression for a generic time evolved state of the system. We discuss various aspects of the dynamics of the system both at stroboscopic and intermediate times, in particular the motion of the center of mass of a generic wave packet and its spreading over time. We also discuss the case of accelerated motion of the center of mass, obtained when the integral of the coefficient strength of the linear potential on a time period is nonvanishing, and we show that the Floquet Hamiltonian gets in this case an additional static linear potential. We also discuss the application of the obtained results to the Lieb-Liniger model.
Dynamics of one-dimensional quantum many-body systems in time-periodic linear potentials / Colcelli, A.; Mussardo, G.; Sierra, G.; Trombettoni, A.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 102:3(2020), pp. 1-16. [10.1103/PhysRevA.102.033310]
Dynamics of one-dimensional quantum many-body systems in time-periodic linear potentials
Colcelli A.;Mussardo G.;Trombettoni A.
2020-01-01
Abstract
We study a system of one-dimensional interacting quantum particles subjected to a time-periodic potential linear in space. After discussing the cases of driven one- A nd two-particle systems, we derive the analogous results for the many-particle case in the presence of a general interaction two-body potential and the corresponding Floquet Hamiltonian. When the undriven model is integrable, the Floquet Hamiltonian is shown to be integrable too. We determine the micromotion operator and the expression for a generic time evolved state of the system. We discuss various aspects of the dynamics of the system both at stroboscopic and intermediate times, in particular the motion of the center of mass of a generic wave packet and its spreading over time. We also discuss the case of accelerated motion of the center of mass, obtained when the integral of the coefficient strength of the linear potential on a time period is nonvanishing, and we show that the Floquet Hamiltonian gets in this case an additional static linear potential. We also discuss the application of the obtained results to the Lieb-Liniger model.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.