The space of solutions of the exact renormalization group fixed point equations of the two-dimensional RPN-1 model, which we recently obtained within the scale invariant scattering framework, is explored for continuous values of N > 0. Quasi-long-range order occurs only for N = 2, and allows for several lines of fixed points meeting at the Berezinskii-Kosterlitz-Thouless transition point. A rich pattern of fixed points is present below N* = 2.244 21 while only zero temperature criticality in the O(N(N + 1)/2 - 1) universality class can occur above this value. The interpretation of an extra solution at N = 3 requires the identification of a path to criticality specific to this value of N.

Critical points in the RP N-1 model / Diouane, Youness; Lamsen, Noel; Delfino, Gesualdo. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2021(2022), pp. 1-21. [10.1088/1742-5468/abe6fc]

Critical points in the RP N-1 model

Youness Diouane;Noel Lamsen;Gesualdo Delfino
2022

Abstract

The space of solutions of the exact renormalization group fixed point equations of the two-dimensional RPN-1 model, which we recently obtained within the scale invariant scattering framework, is explored for continuous values of N > 0. Quasi-long-range order occurs only for N = 2, and allows for several lines of fixed points meeting at the Berezinskii-Kosterlitz-Thouless transition point. A rich pattern of fixed points is present below N* = 2.244 21 while only zero temperature criticality in the O(N(N + 1)/2 - 1) universality class can occur above this value. The interpretation of an extra solution at N = 3 requires the identification of a path to criticality specific to this value of N.
2021
1
21
033214
Diouane, Youness; Lamsen, Noel; Delfino, Gesualdo
File in questo prodotto:
File Dimensione Formato  
RPN.pdf

embargo fino al 28/02/2023

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 430.78 kB
Formato Adobe PDF
430.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/128491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact