We propose to apply a version of the classical Stokes expansion method to the perturbative construction of invariant tori for PDEs corresponding to solutions quasiperiodic in space and time variables. We argue that, for integrable PDEs all but finite number of the small divisors arising in the perturbative analysis cancel. As an illustrative example we establish such cancellations for the case of KP equation. It is proved that, under mild assumptions about decay of the magnitude of the Fourier modes all analytic families of finite-dimensional invariant tori for KP are given by the Krichever construction in terms of thetafunctions of Riemann surfaces. We also present an explicit construction of infinite dimensional real theta-functions and corresponding quasiperiodic solutions to KP as sums of infinite number of interacting plane waves.

On analytic families of invariant tori for PDEs / Dubrovin, Boris. - In: ASTÉRISQUE. - ISSN 0303-1179. - 297:(2004), pp. 35-65.

On analytic families of invariant tori for PDEs

Dubrovin, Boris
2004-01-01

Abstract

We propose to apply a version of the classical Stokes expansion method to the perturbative construction of invariant tori for PDEs corresponding to solutions quasiperiodic in space and time variables. We argue that, for integrable PDEs all but finite number of the small divisors arising in the perturbative analysis cancel. As an illustrative example we establish such cancellations for the case of KP equation. It is proved that, under mild assumptions about decay of the magnitude of the Fourier modes all analytic families of finite-dimensional invariant tori for KP are given by the Krichever construction in terms of thetafunctions of Riemann surfaces. We also present an explicit construction of infinite dimensional real theta-functions and corresponding quasiperiodic solutions to KP as sums of infinite number of interacting plane waves.
2004
297
35
65
http://smf4.emath.fr/Publications/Asterisque/2004/297/html/smf_ast_297_35-65.html
http://preprints.sissa.it/xmlui/handle/1963/6474
Dubrovin, Boris
File in questo prodotto:
File Dimensione Formato  
kp1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 311.33 kB
Formato Adobe PDF
311.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact