Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
SISSA DIGITAL LIBRARYInstitutional Research Information System (Statistiche: prodotti, OA) Per informazioni contatta sdl@sissa.it
Perelman's doubling theorem asserts that the metric space obtained by gluing along their boundaries two copies of an Alexandrov space with curvature ≥κ is an Alexandrov space with the same dimension and satisfying the same curvature lower bound. We show that this result cannot be extended to metric measure spaces satisfying synthetic Ricci curvature bounds in the MCP sense. The counterexample is given by the Grushin half-plane, which satisfies the MCP(0,N) if and only if N≥4, while its double satisfies the MCP(0,N) if and only if N≥5.
A counterexample to gluing theorems for MCP metric measure spaces / Rizzi, L.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 50:5(2018), pp. 781-790. [10.1112/blms.12186]
A counterexample to gluing theorems for MCP metric measure spaces
Perelman's doubling theorem asserts that the metric space obtained by gluing along their boundaries two copies of an Alexandrov space with curvature ≥κ is an Alexandrov space with the same dimension and satisfying the same curvature lower bound. We show that this result cannot be extended to metric measure spaces satisfying synthetic Ricci curvature bounds in the MCP sense. The counterexample is given by the Grushin half-plane, which satisfies the MCP(0,N) if and only if N≥4, while its double satisfies the MCP(0,N) if and only if N≥5.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/128685
Citazioni
ND
3
2
social impact
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.