Symplectic instanton vector bundles on the projective space P3 constitute a natural generalization of mathematical instantons of rank 2. We study the moduli space In,r of rank-2r symplectic instanton vector bundles on P3 with r ≥ 2 and second Chern class n ≥ r, n ≡ r(mod2). We give an explicit construction of an irreducible component In∗,r of this space for each such value of n and show that In∗,r has the expected dimension 4n(r + 1) − r(2r + 1). © 2012 Versita Warsaw and Springer-Verlag Wien.
Moduli of symplectic instanton vector bundles of higher rank on projective space P3 / Bruzzo, U.; Markushevich, D.; Tikhomirov, A. S.. - In: CENTRAL EUROPEAN JOURNAL OF MATHEMATICS. - ISSN 1895-1074. - 10:(2012), pp. 1232-1245. [10.2478/s11533-012-0062-2]
Moduli of symplectic instanton vector bundles of higher rank on projective space P3
Bruzzo, U.;
2012-01-01
Abstract
Symplectic instanton vector bundles on the projective space P3 constitute a natural generalization of mathematical instantons of rank 2. We study the moduli space In,r of rank-2r symplectic instanton vector bundles on P3 with r ≥ 2 and second Chern class n ≥ r, n ≡ r(mod2). We give an explicit construction of an irreducible component In∗,r of this space for each such value of n and show that In∗,r has the expected dimension 4n(r + 1) − r(2r + 1). © 2012 Versita Warsaw and Springer-Verlag Wien.File | Dimensione | Formato | |
---|---|---|---|
Symplectic_instantons.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
249.12 kB
Formato
Adobe PDF
|
249.12 kB | Adobe PDF | Visualizza/Apri |
2012 Bruzzo.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.