The partition function of N=2 non-autonomous Toda chain on the root system of the Langlands dual, the evolution parameter being the RG scale. A systematic algorithm computing the full multi-instanton corrections is derived in terms of recursion relations whose gauge theoretical solution is obtained just by fixing the perturbative part of the IR prepotential as its asymptotic boundary condition for the RGE. We analyze the explicit solutions of the tau-system for all the classical groups at the diverse levels, extend our analysis to affine twisted Lie algebras and provide conjectural bilinear relations for the tau-functions of linear quiver gauge theory.

tt* Toda equations for surface defects in N = SYM and instanton counting for classical Lie groups / Bonelli, Giulio; Globlek, Fran; Tanzini, Alessandro. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 55:45(2022), pp. 1-47. [10.1088/1751-8121/ac9e2a]

tt* Toda equations for surface defects in N = SYM and instanton counting for classical Lie groups

Giulio Bonelli
;
Fran Globlek;Alessandro Tanzini
2022-01-01

Abstract

The partition function of N=2 non-autonomous Toda chain on the root system of the Langlands dual, the evolution parameter being the RG scale. A systematic algorithm computing the full multi-instanton corrections is derived in terms of recursion relations whose gauge theoretical solution is obtained just by fixing the perturbative part of the IR prepotential as its asymptotic boundary condition for the RGE. We analyze the explicit solutions of the tau-system for all the classical groups at the diverse levels, extend our analysis to affine twisted Lie algebras and provide conjectural bilinear relations for the tau-functions of linear quiver gauge theory.
2022
55
45
1
47
454004
10.1088/1751-8121/ac9e2a
https://arxiv.org/abs/2206.13212
Bonelli, Giulio; Globlek, Fran; Tanzini, Alessandro
File in questo prodotto:
File Dimensione Formato  
Bonelli_2022_J._Phys._A:_Math._Theor._55_454004.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 661.64 kB
Formato Adobe PDF
661.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/131615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact