Using theory and simulations, we carried out a first systematic characterization of DNA unzipping via nanopore translocation. Starting from partially unzipped states, we found three dynamical regimes depending on the applied force f: (i) heterogeneous DNA retraction and rezipping (f < 17 pN), (ii) normal (17 pN < f < 60 pN), and (iii) anomalous (f > 60 pN) drift-diffusive behavior. We show that the normal drift-diffusion regime can be effectively modeled as a one-dimensional stochastic process in a tilted periodic potential. We use the theory of stochastic processes to recover the potential from nonequilibrium unzipping trajectories and show that it corresponds to the free-energy landscape for single-base-pair unzipping. Applying this general approach to other single-molecule systems with periodic potentials ought to yield detailed free-energy landscapes from out-of-equilibrium trajectories.

Nonequilibrium Thermodynamics of DNA Nanopore Unzipping / Suma, Antonio; Carnevale, Vincenzo; Micheletti, Cristian. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 130:4(2023), pp. 0481011-0481017. [10.1103/PhysRevLett.130.048101]

Nonequilibrium Thermodynamics of DNA Nanopore Unzipping

Micheletti, Cristian
2023-01-01

Abstract

Using theory and simulations, we carried out a first systematic characterization of DNA unzipping via nanopore translocation. Starting from partially unzipped states, we found three dynamical regimes depending on the applied force f: (i) heterogeneous DNA retraction and rezipping (f < 17 pN), (ii) normal (17 pN < f < 60 pN), and (iii) anomalous (f > 60 pN) drift-diffusive behavior. We show that the normal drift-diffusion regime can be effectively modeled as a one-dimensional stochastic process in a tilted periodic potential. We use the theory of stochastic processes to recover the potential from nonequilibrium unzipping trajectories and show that it corresponds to the free-energy landscape for single-base-pair unzipping. Applying this general approach to other single-molecule systems with periodic potentials ought to yield detailed free-energy landscapes from out-of-equilibrium trajectories.
2023
130
4
0481011
0481017
048101
10.1103/PhysRevLett.130.048101
https://arxiv.org/abs/2212.05882
Suma, Antonio; Carnevale, Vincenzo; Micheletti, Cristian
File in questo prodotto:
File Dimensione Formato  
2023_PhysRevLett.130.048101_Thermodynamics_DNA_nanopore_unzipping.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/132170
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact