Whitham and Benjamin predicted in 1967 that small-amplitude periodic traveling Stokes waves of the 2d-gravity water waves equations are linearly unstable with respect to long-wave perturbations, if the depth h is larger than a critical threshold hWB ≈ 1.363. In this paper, we completely describe, for any finite value of h > 0, the four eigenvalues close to zero of the linearized equations at the Stokes wave, as the Floquet exponent μ is turned on.

Benjamin–Feir Instability of Stokes Waves in Finite Depth / Berti, M.; Maspero, A.; Ventura, P.. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 247:(2023), pp. 1-54. [10.1007/s00205-023-01916-2]

Benjamin–Feir Instability of Stokes Waves in Finite Depth

Berti M.;Maspero A.;Ventura P.
2023-01-01

Abstract

Whitham and Benjamin predicted in 1967 that small-amplitude periodic traveling Stokes waves of the 2d-gravity water waves equations are linearly unstable with respect to long-wave perturbations, if the depth h is larger than a critical threshold hWB ≈ 1.363. In this paper, we completely describe, for any finite value of h > 0, the four eigenvalues close to zero of the linearized equations at the Stokes wave, as the Floquet exponent μ is turned on.
2023
247
1
54
91
https://doi.org/10.1007/s00205-023-01916-2
https://arxiv.org/abs/2204.00809
Berti, M.; Maspero, A.; Ventura, P.
File in questo prodotto:
File Dimensione Formato  
s00205-023-01916-2 (6).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/133971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact