We study a chiral spin liquid wave function defined as a Gutzwiller projected BCS state with a complex pairing function. After projection, spontaneous dimerization is found for any odd but finite number of chains, thus satisfying the Lieb-Schultz-Mattis theorem, whereas for an even number of chains there is no dimerization. The two-dimensional thermodynamic limit is consistently reached for a large number of chains since the dimer order parameter vanishes in this limit. This property clearly supports the possibility of a spin liquid ground state in two dimensions with a gap to all physical excitations and with no broken translation symmetry.

Chiral spin liquid wave function and the Lieb-Schultz-Mattis theorem / Sorella, S.; Capriotti, L.; Becca, F.; Parola, A.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 91:25(2003), pp. 1-4. [10.1103/PhysRevLett.91.257005]

Chiral spin liquid wave function and the Lieb-Schultz-Mattis theorem

Sorella, S.;Becca, F.;
2003-01-01

Abstract

We study a chiral spin liquid wave function defined as a Gutzwiller projected BCS state with a complex pairing function. After projection, spontaneous dimerization is found for any odd but finite number of chains, thus satisfying the Lieb-Schultz-Mattis theorem, whereas for an even number of chains there is no dimerization. The two-dimensional thermodynamic limit is consistently reached for a large number of chains since the dimer order parameter vanishes in this limit. This property clearly supports the possibility of a spin liquid ground state in two dimensions with a gap to all physical excitations and with no broken translation symmetry.
2003
91
25
1
4
257005
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.91.257005
https://arxiv.org/abs/cond-mat/0306732
Sorella, S.; Capriotti, L.; Becca, F.; Parola, A.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.91.257005.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 217.15 kB
Formato Adobe PDF
217.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/13420
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact