We study the screening of a macroscopic electric field in a crystalline dielectric. Density-functional perturbation theory provides the static dielectric constant (or tensor) as a bulk property; we give a formulation which extends the local-density approximation, and specifically we discuss its implementation within gradient-corrected schemes. We briefly consider the relevance (if any) of the so-called ''gap problem'' to static linear response. As a case study, we perform an ab initio calculation of the dielectric constant in silicon within a popular gradient-corrected local-density scheme. We find that the gradient corrections reduce the discrepancy found so far between local-density predictions and experiments in covalently bonded materials. The amount of this reduction is sizable if the calculations are performed at the experimental equilibrium lattice constant of the crystal, while however, it is only marginal when the calculations are carried out, at the calculated lattice constants, consistently within each given theoretical scheme.
Density-functional theory of the dielectric constant: gradient-corrected calculation for silicon / Dal Corso, A.; Baroni, S.; Resta, R.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER. - ISSN 0163-1829. - 49:8(1994), pp. 5323-5328. [10.1103/PhysRevB.49.5323]
Density-functional theory of the dielectric constant: gradient-corrected calculation for silicon
Dal Corso, A.;Baroni, S.;Resta, R.
1994-01-01
Abstract
We study the screening of a macroscopic electric field in a crystalline dielectric. Density-functional perturbation theory provides the static dielectric constant (or tensor) as a bulk property; we give a formulation which extends the local-density approximation, and specifically we discuss its implementation within gradient-corrected schemes. We briefly consider the relevance (if any) of the so-called ''gap problem'' to static linear response. As a case study, we perform an ab initio calculation of the dielectric constant in silicon within a popular gradient-corrected local-density scheme. We find that the gradient corrections reduce the discrepancy found so far between local-density predictions and experiments in covalently bonded materials. The amount of this reduction is sizable if the calculations are performed at the experimental equilibrium lattice constant of the crystal, while however, it is only marginal when the calculations are carried out, at the calculated lattice constants, consistently within each given theoretical scheme.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.49.5323.1994.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
404.69 kB
Formato
Adobe PDF
|
404.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.