We prove the existence of small amplitude time quasi-periodic solutions of the pure gravity water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space periodic free interface. Using a Nash-Moser implicit function iterative scheme we construct traveling nonlinear waves which pass through each other slightly deforming and retaining forever a quasiperiodic structure. These solutions exist for any fixed value of depth and gravity and restricting the vorticity parameter to a Borel set of asymptotically full Lebesgue measure.
Pure gravity traveling quasi-periodic water waves with constant vorticity / Berti, M; Franzoi, L; Maspero, A. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 77:2(2024), pp. 990-1064. [10.1002/cpa.22143]
Pure gravity traveling quasi-periodic water waves with constant vorticity
Berti, M;Franzoi, L
;Maspero, A
2024-01-01
Abstract
We prove the existence of small amplitude time quasi-periodic solutions of the pure gravity water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space periodic free interface. Using a Nash-Moser implicit function iterative scheme we construct traveling nonlinear waves which pass through each other slightly deforming and retaining forever a quasiperiodic structure. These solutions exist for any fixed value of depth and gravity and restricting the vorticity parameter to a Borel set of asymptotically full Lebesgue measure.File | Dimensione | Formato | |
---|---|---|---|
2101.12006.pdf
accesso aperto
Descrizione: postprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
Comm Pure Appl Math - 2023 - Berti - Pure gravity traveling.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
941.04 kB
Formato
Adobe PDF
|
941.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cpamshell2-revised.pdf
Open Access dal 11/09/2024
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
883.92 kB
Formato
Adobe PDF
|
883.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.