For an arbitrary integer r >= 1$r\ge 1$, we compute r-framed motivic DT and PT invariants of small crepant resolutions of toric Calabi-Yau 3-folds, establishing a "higher rank" version of the motivic DT/PT wall-crossing formula. This generalises the work of Morrison and Nagao. Our formulae, in particular their relationship with the r=1$r=1$ theory, fit nicely in the current development of higher rank refined DT invariants.
Framed motivic Donaldson-Thomas invariants of small crepant resolutions / Cazzaniga, A.; Ricolfi, A. T.. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 295:6(2022), pp. 1096-1112. [10.1002/mana.202100068]
Framed motivic Donaldson-Thomas invariants of small crepant resolutions
Ricolfi, A. T.
2022-01-01
Abstract
For an arbitrary integer r >= 1$r\ge 1$, we compute r-framed motivic DT and PT invariants of small crepant resolutions of toric Calabi-Yau 3-folds, establishing a "higher rank" version of the motivic DT/PT wall-crossing formula. This generalises the work of Morrison and Nagao. Our formulae, in particular their relationship with the r=1$r=1$ theory, fit nicely in the current development of higher rank refined DT invariants.File | Dimensione | Formato | |
---|---|---|---|
15. Framed motivic DT invariants of small crepant resolutions.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
449.47 kB
Formato
Adobe PDF
|
449.47 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.