For an arbitrary integer r >= 1$r\ge 1$, we compute r-framed motivic DT and PT invariants of small crepant resolutions of toric Calabi-Yau 3-folds, establishing a "higher rank" version of the motivic DT/PT wall-crossing formula. This generalises the work of Morrison and Nagao. Our formulae, in particular their relationship with the r=1$r=1$ theory, fit nicely in the current development of higher rank refined DT invariants.

Framed motivic Donaldson-Thomas invariants of small crepant resolutions / Cazzaniga, A.; Ricolfi, A. T.. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 295:6(2022), pp. 1096-1112. [10.1002/mana.202100068]

Framed motivic Donaldson-Thomas invariants of small crepant resolutions

Ricolfi, A. T.
2022-01-01

Abstract

For an arbitrary integer r >= 1$r\ge 1$, we compute r-framed motivic DT and PT invariants of small crepant resolutions of toric Calabi-Yau 3-folds, establishing a "higher rank" version of the motivic DT/PT wall-crossing formula. This generalises the work of Morrison and Nagao. Our formulae, in particular their relationship with the r=1$r=1$ theory, fit nicely in the current development of higher rank refined DT invariants.
2022
295
6
1096
1112
https://arxiv.org/abs/2004.07837
Cazzaniga, A.; Ricolfi, A. T.
File in questo prodotto:
File Dimensione Formato  
15. Framed motivic DT invariants of small crepant resolutions.pdf

accesso aperto

Licenza: Creative commons
Dimensione 449.47 kB
Formato Adobe PDF
449.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact