We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi-Yau threefold. We exploit a local study of the Hilbert-Chow morphism about the cycle of a smooth curve. We compute, via Quot schemes, the global Donaldson-Thomas theory of a general Abel-Jacobi curve of genus 3.

The DT/PT correspondence for smooth curves / Ricolfi, Andrea T.. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 290:1-2(2018), pp. 699-710. [10.1007/s00209-017-2037-2]

The DT/PT correspondence for smooth curves

Ricolfi, Andrea T.
Writing – Original Draft Preparation
2018-01-01

Abstract

We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi-Yau threefold. We exploit a local study of the Hilbert-Chow morphism about the cycle of a smooth curve. We compute, via Quot schemes, the global Donaldson-Thomas theory of a general Abel-Jacobi curve of genus 3.
2018
290
1-2
699
710
https://arxiv.org/abs/1708.07812
Ricolfi, Andrea T.
File in questo prodotto:
File Dimensione Formato  
4. The DT:PT correspondence for smooth curves.pdf

accesso aperto

Licenza: Creative commons
Dimensione 440 kB
Formato Adobe PDF
440 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact