We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi-Yau threefold. We exploit a local study of the Hilbert-Chow morphism about the cycle of a smooth curve. We compute, via Quot schemes, the global Donaldson-Thomas theory of a general Abel-Jacobi curve of genus 3.
The DT/PT correspondence for smooth curves / Ricolfi, Andrea T.. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 290:1-2(2018), pp. 699-710. [10.1007/s00209-017-2037-2]
The DT/PT correspondence for smooth curves
Ricolfi, Andrea T.
Writing – Original Draft Preparation
2018-01-01
Abstract
We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi-Yau threefold. We exploit a local study of the Hilbert-Chow morphism about the cycle of a smooth curve. We compute, via Quot schemes, the global Donaldson-Thomas theory of a general Abel-Jacobi curve of genus 3.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
4. The DT:PT correspondence for smooth curves.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
440 kB
Formato
Adobe PDF
|
440 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.