We classify coherent modules on k[x, y] of length at most 4 and supported at the origin. We compare our calculation with the motivic class of the moduli stack parametrizing such modules, extracted from the Feit-Fine formula. We observe that the natural torus action on this stack has finitely many fixed points, corresponding to connected skew Ferrers diagrams. (C) 2018 Elsevier Inc. All rights reserved.
On coherent sheaves of small length on the affine plane / Moschetti, Riccardo; Ricolfi, Andrea T.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 516:(2018), pp. 471-489. [10.1016/j.jalgebra.2018.09.028]
On coherent sheaves of small length on the affine plane
Ricolfi, Andrea T.Writing – Original Draft Preparation
2018-01-01
Abstract
We classify coherent modules on k[x, y] of length at most 4 and supported at the origin. We compare our calculation with the motivic class of the moduli stack parametrizing such modules, extracted from the Feit-Fine formula. We observe that the natural torus action on this stack has finitely many fixed points, corresponding to connected skew Ferrers diagrams. (C) 2018 Elsevier Inc. All rights reserved.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
3. On coherent sheaves of small length on the affine plane.pdf
non disponibili
Licenza:
Non specificato
Dimensione
410.39 kB
Formato
Adobe PDF
|
410.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.