We classify coherent modules on k[x, y] of length at most 4 and supported at the origin. We compare our calculation with the motivic class of the moduli stack parametrizing such modules, extracted from the Feit-Fine formula. We observe that the natural torus action on this stack has finitely many fixed points, corresponding to connected skew Ferrers diagrams. (C) 2018 Elsevier Inc. All rights reserved.

On coherent sheaves of small length on the affine plane / Moschetti, Riccardo; Ricolfi, Andrea T.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 516:(2018), pp. 471-489. [10.1016/j.jalgebra.2018.09.028]

On coherent sheaves of small length on the affine plane

Ricolfi, Andrea T.
Writing – Original Draft Preparation
2018-01-01

Abstract

We classify coherent modules on k[x, y] of length at most 4 and supported at the origin. We compare our calculation with the motivic class of the moduli stack parametrizing such modules, extracted from the Feit-Fine formula. We observe that the natural torus action on this stack has finitely many fixed points, corresponding to connected skew Ferrers diagrams. (C) 2018 Elsevier Inc. All rights reserved.
2018
516
471
489
https://arxiv.org/abs/1708.03969
Moschetti, Riccardo; Ricolfi, Andrea T.
File in questo prodotto:
File Dimensione Formato  
3. On coherent sheaves of small length on the affine plane.pdf

non disponibili

Licenza: Non specificato
Dimensione 410.39 kB
Formato Adobe PDF
410.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact