The subject of this work is the analysis and implementation of stabilized finite element methods on anisotropic meshes. We develop the anisotropic a priori error analysis of the residual-free-bubble (RFB) method applied to elliptic convection-dominated convection-diffusion problems in two dimensions, with finite element spaces of type Qk., k ≥ 1. In the case of P1 finite elements, relying on the equivalence of the RFB method to classical stabilized finite element methods, we propose a new rule, justified through the analysis of the RFB method, for selecting the stabilization parameter in classical stabilized methods on two-dimensional anisotropic triangulations. © 2007 Society for Industrial and Applied Mathematics.

The residual-free-bubble finite element method on anisotropic partitions / Cangiani, A.; Suli, E.. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 45:4(2007), pp. 1654-1678. [10.1137/060658011]

The residual-free-bubble finite element method on anisotropic partitions

Cangiani A.;
2007-01-01

Abstract

The subject of this work is the analysis and implementation of stabilized finite element methods on anisotropic meshes. We develop the anisotropic a priori error analysis of the residual-free-bubble (RFB) method applied to elliptic convection-dominated convection-diffusion problems in two dimensions, with finite element spaces of type Qk., k ≥ 1. In the case of P1 finite elements, relying on the equivalence of the RFB method to classical stabilized finite element methods, we propose a new rule, justified through the analysis of the RFB method, for selecting the stabilization parameter in classical stabilized methods on two-dimensional anisotropic triangulations. © 2007 Society for Industrial and Applied Mathematics.
2007
45
4
1654
1678
Cangiani, A.; Suli, E.
File in questo prodotto:
File Dimensione Formato  
Cangiani-Suli_SINUM_2007.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 989.97 kB
Formato Adobe PDF
989.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact