We compute the monodromy dependence of the isomonodromic tau function on a torus with n Fuchsian singularities and SL(N) residue matrices by using its explicit Fredholm determinant representation. We show that the exterior logarithmic derivative of the tau function defines a closed one-form on the space of monodromies and times, and identify it with the generating function of the monodromy symplectomorphism. As an illustrative example, we discuss the simplest case of the one-punctured torus in detail. Finally, we show that previous results obtained in the genus zero case can be recovered in a straightforward manner using the techniques presented here.

Monodromy dependence and symplectic geometry of isomonodromic tau functions on the torus / Del Monte, Fabrizio; Desiraju, Harini; Gavrylenko, Pavlo. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 56:29(2023), pp. 1-24. [10.1088/1751-8121/acdc6c]

Monodromy dependence and symplectic geometry of isomonodromic tau functions on the torus

Desiraju, Harini;Gavrylenko, Pavlo
2023-01-01

Abstract

We compute the monodromy dependence of the isomonodromic tau function on a torus with n Fuchsian singularities and SL(N) residue matrices by using its explicit Fredholm determinant representation. We show that the exterior logarithmic derivative of the tau function defines a closed one-form on the space of monodromies and times, and identify it with the generating function of the monodromy symplectomorphism. As an illustrative example, we discuss the simplest case of the one-punctured torus in detail. Finally, we show that previous results obtained in the genus zero case can be recovered in a straightforward manner using the techniques presented here.
2023
56
29
1
24
294002
https://arxiv.org/abs/2211.01139
Del Monte, Fabrizio; Desiraju, Harini; Gavrylenko, Pavlo
File in questo prodotto:
File Dimensione Formato  
Del_Monte_2023_J._Phys._A _Math._Theor._56_294002.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 488.71 kB
Formato Adobe PDF
488.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact