We study a discrete approximation of functionals depending on nonlocal gradients. The discretized functionals are proved to be coercive in classical Sobolev spaces. The key ingredient in the proof is a formulation in terms of circulant Toeplitz matrices.
Discrete approximation of nonlocal-gradient energies / Braides, A; Causin, A; Solci, M. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - (2023). [10.1515/acv-2023-0028]
Discrete approximation of nonlocal-gradient energies
Braides, A
;
2023-01-01
Abstract
We study a discrete approximation of functionals depending on nonlocal gradients. The discretized functionals are proved to be coercive in classical Sobolev spaces. The key ingredient in the proof is a formulation in terms of circulant Toeplitz matrices.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2303.00842.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
170.76 kB
Formato
Adobe PDF
|
170.76 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.