We study a discrete approximation of functionals depending on nonlocal gradients. The discretized functionals are proved to be coercive in classical Sobolev spaces. The key ingredient in the proof is a formulation in terms of circulant Toeplitz matrices.

Discrete approximation of nonlocal-gradient energies / Braides, A; Causin, A; Solci, M. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - (2023). [10.1515/acv-2023-0028]

Discrete approximation of nonlocal-gradient energies

Braides, A
;
2023-01-01

Abstract

We study a discrete approximation of functionals depending on nonlocal gradients. The discretized functionals are proved to be coercive in classical Sobolev spaces. The key ingredient in the proof is a formulation in terms of circulant Toeplitz matrices.
2023
Braides, A; Causin, A; Solci, M
File in questo prodotto:
File Dimensione Formato  
2303.00842.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 170.76 kB
Formato Adobe PDF
170.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/135812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact