The thesis focuses on splitting-type theorems in RCD spaces. I and professor Nicola Gigli proved that if in an RCD space there exists a function with good gradient, Laplacian and Hessian then the space is isomorphic as metric measure space to a warped product space between the real line R and a space X'. Moreover we use this general result to prove two rigidity theorems (due to Li and Wang in the smooth setting) in case the space has positive spectrum of the Laplacian.

A general splitting principle on the non-smooth setting and applications / Marconi, Fabio. - (2024 Feb 07).

A general splitting principle on the non-smooth setting and applications

MARCONI, FABIO
2024-02-07

Abstract

The thesis focuses on splitting-type theorems in RCD spaces. I and professor Nicola Gigli proved that if in an RCD space there exists a function with good gradient, Laplacian and Hessian then the space is isomorphic as metric measure space to a warped product space between the real line R and a space X'. Moreover we use this general result to prove two rigidity theorems (due to Li and Wang in the smooth setting) in case the space has positive spectrum of the Laplacian.
7-feb-2024
Gigli, Nicola
Marconi, Fabio
File in questo prodotto:
File Dimensione Formato  
PhD Thesis - Marconi Fabio.pdf

accesso aperto

Descrizione: tesi di Ph.D.
Tipologia: Tesi
Licenza: Non specificato
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/136410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact