Whenever a system possesses a conserved charge, the density matrix splits into eigenspaces associated to the each symmetry sector and we can access the entanglement entropy in a given subspace, known as symmetry resolved entanglement (SRE). Here, we first evaluate the SRE for massless Dirac fermions in a system at finite temperature and size, i.e. on a torus. Then we add a massive term to the Dirac action and we treat it as a perturbation of the massless theory. The charge-dependent entropies turn out to be equally distributed among all the symmetry sectors at leading order. However, we find subleading corrections which depend both on the mass and on the boundary conditions along the torus. We also study the resolution of the fermionic negativity in terms of the charge imbalance between two subsystems. We show that also for this quantity, the presence of the mass alters the equipartition among the different imbalance sectors at subleading order.

Entanglement resolution of free Dirac fermions on a torus / Foligno, Alessandro; Murciano, Sara; Calabrese, Pasquale. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2023:3(2023), pp. 1-43. [10.1007/JHEP03(2023)096]

Entanglement resolution of free Dirac fermions on a torus

Foligno, Alessandro;Murciano, Sara;Calabrese, Pasquale
2023-01-01

Abstract

Whenever a system possesses a conserved charge, the density matrix splits into eigenspaces associated to the each symmetry sector and we can access the entanglement entropy in a given subspace, known as symmetry resolved entanglement (SRE). Here, we first evaluate the SRE for massless Dirac fermions in a system at finite temperature and size, i.e. on a torus. Then we add a massive term to the Dirac action and we treat it as a perturbation of the massless theory. The charge-dependent entropies turn out to be equally distributed among all the symmetry sectors at leading order. However, we find subleading corrections which depend both on the mass and on the boundary conditions along the torus. We also study the resolution of the fermionic negativity in terms of the charge imbalance between two subsystems. We show that also for this quantity, the presence of the mass alters the equipartition among the different imbalance sectors at subleading order.
2023
2023
3
1
43
96
10.1088/1742-5468/ace3b8
https://arxiv.org/abs/2302.08209
Foligno, Alessandro; Murciano, Sara; Calabrese, Pasquale
File in questo prodotto:
File Dimensione Formato  
JHEP03(2023)096.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/136492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact