A possible way to capture the effects of quantum gravity in spacetime at a mesoscopic scale, for relatively low energies, is through an energy-dependent metric, such that particles with different energies probe different spacetimes. In this context, a clear connection between a geometrical approach and modifications of the special relativistic kinematics has been shown in the last few years. In this work, we focus on the geometrical interpretation of the relativistic deformed kinematics present in the framework of doubly special relativity, where a relativity principle is present. In this setting, we study the effects of a momentum dependence of the metric for a uniformly accelerated observer. We show how the local Rindler wedge description gets affected by the proposed observer-dependent metric, while the local Rindler causal structure is not, leading to a standard local causal horizon thermodynamic description. For the proposed modified metric, we can reproduce the derivation of Einstein's equations as the equations of state for the thermal Rindler wedge. The conservation of the Einstein tensor leads to the same privileged momentum basis obtained in other works of some of the present authors, so supporting its relevance.

Spacetime thermodynamics in momentum-dependent geometries / Chirco, G.; Liberati, S.; Relancio, J. J.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 106:6(2022), pp. 1-13. [10.1103/PhysRevD.106.064048]

Spacetime thermodynamics in momentum-dependent geometries

Chirco, G.;Liberati, S.;
2022-01-01

Abstract

A possible way to capture the effects of quantum gravity in spacetime at a mesoscopic scale, for relatively low energies, is through an energy-dependent metric, such that particles with different energies probe different spacetimes. In this context, a clear connection between a geometrical approach and modifications of the special relativistic kinematics has been shown in the last few years. In this work, we focus on the geometrical interpretation of the relativistic deformed kinematics present in the framework of doubly special relativity, where a relativity principle is present. In this setting, we study the effects of a momentum dependence of the metric for a uniformly accelerated observer. We show how the local Rindler wedge description gets affected by the proposed observer-dependent metric, while the local Rindler causal structure is not, leading to a standard local causal horizon thermodynamic description. For the proposed modified metric, we can reproduce the derivation of Einstein's equations as the equations of state for the thermal Rindler wedge. The conservation of the Einstein tensor leads to the same privileged momentum basis obtained in other works of some of the present authors, so supporting its relevance.
2022
106
6
1
13
064048
Chirco, G.; Liberati, S.; Relancio, J. J.
File in questo prodotto:
File Dimensione Formato  
PhysRevD.106.064048.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 384.06 kB
Formato Adobe PDF
384.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/137531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact