We investigate the emergence of quantum scars in a general ensemble of random Hamiltonians (of which the PXP is a particular realization), that we refer to as quantum local random networks. We find a class of scars, that we call "statistical", and we identify specific signatures of the localized nature of these eigenstates by analyzing a combination of indicators of quantum ergodicity and properties related to the network structure of the model. Within this parallelism, we associate the emergence of statistical scars to the presence of "motifs" in the network, that reflects how these are associated to links with anomalously small connectivity. Most remarkably, statistical scars appear at welldefined values of energy, predicted solely on the base of network theory. We study the scaling of the number of statistical scars with system size: by continuously changing the connectivity of the system we find that there is a transition from a regime where the constraints are too weak for scars to exist for large systems to a regime where constraints are stronger and the number of statistical scars increases with system size. This allows to define the concept of "statistical robustness" of quantum scars.
Quantum local random networks and the statistical robustness of quantum scars / Surace, F. M.; Dalmonte, M.; Silva, A.. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 14:6(2023), pp. 1-18. [10.21468/SciPostPhys.14.6.174]
Quantum local random networks and the statistical robustness of quantum scars
Surace F. M.
;Dalmonte M.;Silva A.
2023-01-01
Abstract
We investigate the emergence of quantum scars in a general ensemble of random Hamiltonians (of which the PXP is a particular realization), that we refer to as quantum local random networks. We find a class of scars, that we call "statistical", and we identify specific signatures of the localized nature of these eigenstates by analyzing a combination of indicators of quantum ergodicity and properties related to the network structure of the model. Within this parallelism, we associate the emergence of statistical scars to the presence of "motifs" in the network, that reflects how these are associated to links with anomalously small connectivity. Most remarkably, statistical scars appear at welldefined values of energy, predicted solely on the base of network theory. We study the scaling of the number of statistical scars with system size: by continuously changing the connectivity of the system we find that there is a transition from a regime where the constraints are too weak for scars to exist for large systems to a regime where constraints are stronger and the number of statistical scars increases with system size. This allows to define the concept of "statistical robustness" of quantum scars.File | Dimensione | Formato | |
---|---|---|---|
SciPostPhys_14_6_174.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.