We obtain exact results in \alpha' for open and closed A-model topological string amplitudes on a large class of toric Calabi-Yau threefolds by using their correspondence with five dimensional gauge theories. The toric Calabi-Yau's that we analyze are obtained as minimal resolution of cones over Y(p,q) manifolds and give rise via M-theory compactification to SU(p) gauge theories on R^4 x S^1. As an application we present a detailed study of the local F_2 case and compute open and closed genus zero Gromov-Witten invariants of the C^3/Z_4 orbifold. We also display the modular structure of the topological wave function and give predictions for higher genus amplitudes.The mirror curve in this case is the spectral curve of the relativistic A_1 Toda chain. Our results also indicate the existence of a wider class of relativistic integrable systems associated to generic Y(p,q) geometries.

Exact results for topological strings on resolved Y**p,q singularities / Brini, A.; Tanzini, A.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 289:1(2009), pp. 205-252. [10.1007/s00220-009-0814-4]

Exact results for topological strings on resolved Y**p,q singularities

Tanzini, A.
2009-01-01

Abstract

We obtain exact results in \alpha' for open and closed A-model topological string amplitudes on a large class of toric Calabi-Yau threefolds by using their correspondence with five dimensional gauge theories. The toric Calabi-Yau's that we analyze are obtained as minimal resolution of cones over Y(p,q) manifolds and give rise via M-theory compactification to SU(p) gauge theories on R^4 x S^1. As an application we present a detailed study of the local F_2 case and compute open and closed genus zero Gromov-Witten invariants of the C^3/Z_4 orbifold. We also display the modular structure of the topological wave function and give predictions for higher genus amplitudes.The mirror curve in this case is the spectral curve of the relativistic A_1 Toda chain. Our results also indicate the existence of a wider class of relativistic integrable systems associated to generic Y(p,q) geometries.
2009
289
1
205
252
https://doi.org/10.1007/s00220-009-0814-4
https://arxiv.org/abs/0804.2598
Brini, A.; Tanzini, A.
File in questo prodotto:
File Dimensione Formato  
ypq.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 865.8 kB
Formato Adobe PDF
865.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 36
social impact