We study the scaling of the traces of the integer powers of the partially transposed reduced density matrix Tr(rho(T2)(A))Th and of the entanglement negativity for two spin blocks as a function of their length and separation in the critical Ising chain. For two adjacent blocks, we show that tensor network calculations agree with universal conformal field theory (CFT) predictions. In the case of two disjoint blocks the CFT predictions are recovered only after taking into account the finite size corrections induced by the finite length of the blocks.

Entanglement negativity in the critical Ising chain / Calabrese, Pasquale; Luca, Tagliacozzo; Tonni, Erik. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2013:5(2013), pp. 1-30. [10.1088/1742-5468/2013/05/P05002]

Entanglement negativity in the critical Ising chain

Calabrese, Pasquale;Tonni, Erik
2013

Abstract

We study the scaling of the traces of the integer powers of the partially transposed reduced density matrix Tr(rho(T2)(A))Th and of the entanglement negativity for two spin blocks as a function of their length and separation in the critical Ising chain. For two adjacent blocks, we show that tensor network calculations agree with universal conformal field theory (CFT) predictions. In the case of two disjoint blocks the CFT predictions are recovered only after taking into account the finite size corrections induced by the finite length of the blocks.
2013
5
1
30
P05002
https://doi.org/10.1088/1742-5468/2013/05/P05002
http://arxiv.org/abs/1302.1113
Calabrese, Pasquale; Luca, Tagliacozzo; Tonni, Erik
File in questo prodotto:
File Dimensione Formato  
Calabrese_2013_J._Stat._Mech._2013_P05002.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1302.1113v1.pdf

accesso aperto

Descrizione: Preprint does not differ much from the accepted version
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 917.13 kB
Formato Adobe PDF
917.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 69
social impact