We present a new method to assess the information carried by temporal patterns in spike trains. The method first performs a wavelet decomposition of the spike trains, then uses Shannon information to select a subset of coefficients carrying information and, finally, assesses timing information in terms of decoding performance - the ability to identify the presented stimuli from spike train patterns. We show that the method allows: i) a robust assessment of the information carried by spike time patterns even when this is distributed across multiple time-scales and time-points, ii) an effective denoising of the raster plots that improves the estimate of stimulus tuning of spike trains, and iii) an assessment of the information carried by temporally coordinated spikes across neurons. Using simulated data we demonstrate that the Wavelet-Information (WI) method performs better and is more robust to spike time-jitter, background noise and sample size than well-established approaches, such as principal component analysis, direct estimates of information from digitized spike trains or a metric-based method. Furthermore, when applied to real spike trains from monkey auditory cortex and from rat barrel cortex, the WI method allows extracting larger amounts of spike timing information. Importantly, the fact that the WI method incorporates multiple time-scales makes it robust to the choice of partly arbitrary parameters such as temporal resolution, response window length, number of response features considered, or the number of available trials. These results highlight the potential of the proposed method for accurate and objective assessments of how spike timing encodes information.
Extracting information in spike time patterns with wavelets and information theory
Panzeri, Stefano Vittorio Tiziano;Diamond, Mathew Ernest;
2015-01-01
Abstract
We present a new method to assess the information carried by temporal patterns in spike trains. The method first performs a wavelet decomposition of the spike trains, then uses Shannon information to select a subset of coefficients carrying information and, finally, assesses timing information in terms of decoding performance - the ability to identify the presented stimuli from spike train patterns. We show that the method allows: i) a robust assessment of the information carried by spike time patterns even when this is distributed across multiple time-scales and time-points, ii) an effective denoising of the raster plots that improves the estimate of stimulus tuning of spike trains, and iii) an assessment of the information carried by temporally coordinated spikes across neurons. Using simulated data we demonstrate that the Wavelet-Information (WI) method performs better and is more robust to spike time-jitter, background noise and sample size than well-established approaches, such as principal component analysis, direct estimates of information from digitized spike trains or a metric-based method. Furthermore, when applied to real spike trains from monkey auditory cortex and from rat barrel cortex, the WI method allows extracting larger amounts of spike timing information. Importantly, the fact that the WI method incorporates multiple time-scales makes it robust to the choice of partly arbitrary parameters such as temporal resolution, response window length, number of response features considered, or the number of available trials. These results highlight the potential of the proposed method for accurate and objective assessments of how spike timing encodes information.File | Dimensione | Formato | |
---|---|---|---|
Lopes dos-Santos et al. (2015) J.Neurophysiol.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.