In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss-Manin) derivative of the Seiberg-Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration.
Seiberg–Witten differentials on the Hitchin base / Bruzzo, U.; Dalakov, P.. - In: REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A, MATEMÁTICAS. - ISSN 1579-1505. - 118:2(2024), pp. 53-70. [10.1007/s13398-024-01551-w]
Seiberg–Witten differentials on the Hitchin base
Bruzzo U.
;Dalakov P.
2024-01-01
Abstract
In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss-Manin) derivative of the Seiberg-Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s13398-024-01551-w.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
403.89 kB
Formato
Adobe PDF
|
403.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.