In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss-Manin) derivative of the Seiberg-Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration.

Seiberg–Witten differentials on the Hitchin base / Bruzzo, U.; Dalakov, P.. - In: REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A, MATEMÁTICAS. - ISSN 1579-1505. - 118:2(2024), pp. 53-70. [10.1007/s13398-024-01551-w]

Seiberg–Witten differentials on the Hitchin base

Bruzzo U.
;
Dalakov P.
2024-01-01

Abstract

In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss-Manin) derivative of the Seiberg-Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration.
2024
118
2
53
70
53
10.1007/s13398-024-01551-w
https://arxiv.org/abs/2302.09912
Bruzzo, U.; Dalakov, P.
File in questo prodotto:
File Dimensione Formato  
s13398-024-01551-w.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 403.89 kB
Formato Adobe PDF
403.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/141610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact