We study the coherent dynamics of a quantum many-body system subject to a time-periodic driving. We argue that in many cases, destructive interference in time makes most of the quantum averages time periodic, after an initial transient. We discuss in detail the case of a quantum Ising chain periodically driven across the critical point, finding that, as a result of quantum coherence, the system never reaches an infinite temperature state. Floquet resonance effects are moreover observed in the frequency dependence of the various observables, which display a sequence of well-defined peaks or dips. Extensions to nonintegrable systems are discussed.

Periodic steady regime and interference in a periodically driven quantum system / Russomanno, Angelo; Silva, Alessandro; Santoro, Giuseppe Ernesto. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 109:25(2012), pp. 257201.1-257201.5. [10.1103/PhysRevLett.109.257201]

Periodic steady regime and interference in a periodically driven quantum system

Russomanno, Angelo;Silva, Alessandro;Santoro, Giuseppe Ernesto
2012-01-01

Abstract

We study the coherent dynamics of a quantum many-body system subject to a time-periodic driving. We argue that in many cases, destructive interference in time makes most of the quantum averages time periodic, after an initial transient. We discuss in detail the case of a quantum Ising chain periodically driven across the critical point, finding that, as a result of quantum coherence, the system never reaches an infinite temperature state. Floquet resonance effects are moreover observed in the frequency dependence of the various observables, which display a sequence of well-defined peaks or dips. Extensions to nonintegrable systems are discussed.
2012
109
25
1
5
257201
http://link.aps.org/doi/10.1103/PhysRevLett.109.257201
https://arxiv.org/abs/1204.5084
http://cdsads.u-strasbg.fr/abs/2012PhRvL.109y7201R
Russomanno, Angelo; Silva, Alessandro; Santoro, Giuseppe Ernesto
File in questo prodotto:
File Dimensione Formato  
Russomanno_PhysRevLett.109.257201.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 632.42 kB
Formato Adobe PDF
632.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 159
  • ???jsp.display-item.citation.isi??? 156
social impact