- We study the structure of polynomial singularities given by semialgebraic conditions on the jet of maps from the sphere to Euclidean space. We prove upper and lower bounds for the homological complexity of these singularities. The upper bound is proved using a semialgebraic version of stratified Morse Theory for jets. For the lower bound, we prove a general result stating that small continuous perturbations of C 1 manifolds can only enrich their topology. In the case of random maps, we provide asymptotic estimates for the expectation of the homological complexity, generalizing classical results of Edelman-Kostlan-Shub- Smale.

Maximal and typical topology of real polynomial singularities / Lerario, Antonio; Stecconi, Michele. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 1777-5310. - 74:2(2024), pp. 589-626. [10.5802/aif.3603]

Maximal and typical topology of real polynomial singularities

Lerario, Antonio;Stecconi, Michele
2024-01-01

Abstract

- We study the structure of polynomial singularities given by semialgebraic conditions on the jet of maps from the sphere to Euclidean space. We prove upper and lower bounds for the homological complexity of these singularities. The upper bound is proved using a semialgebraic version of stratified Morse Theory for jets. For the lower bound, we prove a general result stating that small continuous perturbations of C 1 manifolds can only enrich their topology. In the case of random maps, we provide asymptotic estimates for the expectation of the homological complexity, generalizing classical results of Edelman-Kostlan-Shub- Smale.
2024
74
2
589
626
10.5802/aif.3603
https://arxiv.org/abs/1906.04444
Lerario, Antonio; Stecconi, Michele
File in questo prodotto:
File Dimensione Formato  
AIF_2024__74_2_589_0.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/141971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact