We investigate the formation of quantum droplets at finite temperature in attractive Bose mixtures subject to a strong transverse harmonic confinement. By means of exact path-integral Monte Carlo methods we determine the equilibrium density of the gas and the liquid as well as the pressure vs volume dependence along isothermal curves. Results for the equation of state and for the gas-liquid coexistence region in quasi-2D configurations are compared with calculations in strictly two dimensions, finding excellent agreement. Within the pure 2D model we explore the relevance of the quantum scale anomaly and we determine the critical interaction strength for the occurrence of the first-order gas to liquid transition. Furthermore, we find that the superfluid response develops suddenly, following the density jump from the gas to the liquid state.
Quantum Droplets in Two-Dimensional Bose Mixtures at Finite Temperature / Spada, G.; Pilati, S.; Giorgini, S.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 133:8(2024), pp. 1-6. [10.1103/physrevlett.133.083401]
Quantum Droplets in Two-Dimensional Bose Mixtures at Finite Temperature
Spada, G.;Pilati, S.;
2024-01-01
Abstract
We investigate the formation of quantum droplets at finite temperature in attractive Bose mixtures subject to a strong transverse harmonic confinement. By means of exact path-integral Monte Carlo methods we determine the equilibrium density of the gas and the liquid as well as the pressure vs volume dependence along isothermal curves. Results for the equation of state and for the gas-liquid coexistence region in quasi-2D configurations are compared with calculations in strictly two dimensions, finding excellent agreement. Within the pure 2D model we explore the relevance of the quantum scale anomaly and we determine the critical interaction strength for the occurrence of the first-order gas to liquid transition. Furthermore, we find that the superfluid response develops suddenly, following the density jump from the gas to the liquid state.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.133.083401.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.