We propose a time discretization of the Navier-Stokes equations inspired by the theory of gradient flows. This discretization produces Leray/Hopf solutions in any dimension and suitable solutions in dimension 3. We also show that in dimension 3 and for initial datum in H 1, the scheme converges to strong solutions in some interval [0, T) and, if the datum satisfies the classical smallness condition, it produces the smooth solution in [0, ∞). © 2012 Elsevier Masson SAS.
A variational approach to the Navier-Stokes equations
Gigli, Nicola;
2012-01-01
Abstract
We propose a time discretization of the Navier-Stokes equations inspired by the theory of gradient flows. This discretization produces Leray/Hopf solutions in any dimension and suitable solutions in dimension 3. We also show that in dimension 3 and for initial datum in H 1, the scheme converges to strong solutions in some interval [0, T) and, if the datum satisfies the classical smallness condition, it produces the smooth solution in [0, ∞). © 2012 Elsevier Masson SAS.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
varNS.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.