We propose a time discretization of the Navier-Stokes equations inspired by the theory of gradient flows. This discretization produces Leray/Hopf solutions in any dimension and suitable solutions in dimension 3. We also show that in dimension 3 and for initial datum in H 1, the scheme converges to strong solutions in some interval [0, T) and, if the datum satisfies the classical smallness condition, it produces the smooth solution in [0, ∞). © 2012 Elsevier Masson SAS.

A variational approach to the Navier-Stokes equations

Gigli, Nicola;
2012-01-01

Abstract

We propose a time discretization of the Navier-Stokes equations inspired by the theory of gradient flows. This discretization produces Leray/Hopf solutions in any dimension and suitable solutions in dimension 3. We also show that in dimension 3 and for initial datum in H 1, the scheme converges to strong solutions in some interval [0, T) and, if the datum satisfies the classical smallness condition, it produces the smooth solution in [0, ∞). © 2012 Elsevier Masson SAS.
2012
136
3
256
276
10.1016/j.bulsci.2012.01.001
Gigli, Nicola; Mosconi, S.
File in questo prodotto:
File Dimensione Formato  
varNS.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact