The purpose of this note is to prove that the symplectic mapping class groups of many K3 surfaces are infinitely generated. Our proof makes no use of any Floer-theoretic machinery but instead follows the approach of Kronheimer and uses invariants derived from the Seiberg-Witten equations.

Symplectic mapping class groups of K3 surfaces and Seiberg–Witten invariants / Smirnov, Gleb. - In: GEOMETRIC AND FUNCTIONAL ANALYSIS. - ISSN 1016-443X. - 32:2(2022), pp. 280-301. [10.1007/s00039-022-00600-z]

Symplectic mapping class groups of K3 surfaces and Seiberg–Witten invariants

Smirnov, Gleb
2022-01-01

Abstract

The purpose of this note is to prove that the symplectic mapping class groups of many K3 surfaces are infinitely generated. Our proof makes no use of any Floer-theoretic machinery but instead follows the approach of Kronheimer and uses invariants derived from the Seiberg-Witten equations.
2022
32
2
280
301
10.1007/s00039-022-00600-z
https://arxiv.org/abs/2102.10811
Smirnov, Gleb
File in questo prodotto:
File Dimensione Formato  
s00039-022-00600-z.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 431.6 kB
Formato Adobe PDF
431.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact