The purpose of this note is to prove that the symplectic mapping class groups of many K3 surfaces are infinitely generated. Our proof makes no use of any Floer-theoretic machinery but instead follows the approach of Kronheimer and uses invariants derived from the Seiberg-Witten equations.
Symplectic mapping class groups of K3 surfaces and Seiberg–Witten invariants / Smirnov, Gleb. - In: GEOMETRIC AND FUNCTIONAL ANALYSIS. - ISSN 1016-443X. - 32:2(2022), pp. 280-301. [10.1007/s00039-022-00600-z]
Symplectic mapping class groups of K3 surfaces and Seiberg–Witten invariants
Smirnov, Gleb
2022-01-01
Abstract
The purpose of this note is to prove that the symplectic mapping class groups of many K3 surfaces are infinitely generated. Our proof makes no use of any Floer-theoretic machinery but instead follows the approach of Kronheimer and uses invariants derived from the Seiberg-Witten equations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00039-022-00600-z.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
431.6 kB
Formato
Adobe PDF
|
431.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.