We prove the existence of steady space quasi-periodic stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel Rx[-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\times [-1,1]$$\end{document}. These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash-Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamline
Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow / Franzoi, Luca; Masmoudi, Nader; Montalto, Riccardo. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 248:5(2024), pp. 1-79. [10.1007/s00205-024-02028-1]
Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow
Franzoi, Luca;Montalto, Riccardo
2024-01-01
Abstract
We prove the existence of steady space quasi-periodic stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel Rx[-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\times [-1,1]$$\end{document}. These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash-Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamlineFile | Dimensione | Formato | |
---|---|---|---|
s00205-024-02028-1.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.