Let C-d,C-n be the convex cone consisting of real n-variate degree d forms that are strictly positive on R-n {0}. We prove that the Lebesgue volume of the sublevel set {g <= 1} of g is an element of C-d,n is a completely monotone function on C-d,C-n and investigate the related properties. Furthermore, we provide (partial) characterization of forms whose sublevel sets have finite Lebesgue volume.
Volumes of Sublevel Sets of Nonnegative Forms and Complete Monotonicity / Kozhasov, Khazhgali; Lasserre, Jean B.. - In: SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY. - ISSN 2470-6566. - 7:4(2023), pp. 768-785. [10.1137/22m1502458]
Volumes of Sublevel Sets of Nonnegative Forms and Complete Monotonicity
Kozhasov, Khazhgali;
2023-01-01
Abstract
Let C-d,C-n be the convex cone consisting of real n-variate degree d forms that are strictly positive on R-n {0}. We prove that the Lebesgue volume of the sublevel set {g <= 1} of g is an element of C-d,n is a completely monotone function on C-d,C-n and investigate the related properties. Furthermore, we provide (partial) characterization of forms whose sublevel sets have finite Lebesgue volume.File | Dimensione | Formato | |
---|---|---|---|
2206.05170v1.pdf
non disponibili
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
355.69 kB
Formato
Adobe PDF
|
355.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.