We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV -extension property if and only if it has the strong extension property for sets of finite perimeter. We also prove several implications between the strong BVextension property and extendability of two different non-equivalent versions of Sobolev W1,1 -spaces and show via examples that the remaining implications fail.
Sobolev, BV and perimeter extensions in metric measure spaces / Caputo, Emanuele; Koivu, Jesse; Rajala, Tapio. - In: ANNALES FENNICI MATHEMATICI. - ISSN 2737-114X. - 49:1(2024), pp. 135-165. [10.54330/afm.143899]
Sobolev, BV and perimeter extensions in metric measure spaces
Caputo, Emanuele;
2024-01-01
Abstract
We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV -extension property if and only if it has the strong extension property for sets of finite perimeter. We also prove several implications between the strong BVextension property and extendability of two different non-equivalent versions of Sobolev W1,1 -spaces and show via examples that the remaining implications fail.File | Dimensione | Formato | |
---|---|---|---|
143899-Article Text-329183-1-10-20240312.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
397.21 kB
Formato
Adobe PDF
|
397.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.