We study the qualitative stability of two classes of Sobolev inequalities on Riemannian manifolds. In the case of positive Ricci curvature, we prove that an almost extremal function for the sharp Sobolev inequality is close to an extremal function of the round sphere. In the setting of non -negative Ricci curvature and Euclidean volume growth, we show an analogous result in comparison with the extremal functions in the Euclidean Sobolev inequality. As an application, we deduce a stability result for minimizing Yamabe metrics. The arguments rely on a generalized Lions' concentration compactness on varying spaces and on rigidity results of Sobolev inequalities on singular spaces. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).

Stability of Sobolev inequalities on Riemannian manifolds with Ricci curvature lower bounds / Nobili, Francesco; Violo, Ivan Yuri. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 440:(2024). [10.1016/j.aim.2024.109521]

Stability of Sobolev inequalities on Riemannian manifolds with Ricci curvature lower bounds

Nobili, Francesco;Violo, Ivan Yuri
2024-01-01

Abstract

We study the qualitative stability of two classes of Sobolev inequalities on Riemannian manifolds. In the case of positive Ricci curvature, we prove that an almost extremal function for the sharp Sobolev inequality is close to an extremal function of the round sphere. In the setting of non -negative Ricci curvature and Euclidean volume growth, we show an analogous result in comparison with the extremal functions in the Euclidean Sobolev inequality. As an application, we deduce a stability result for minimizing Yamabe metrics. The arguments rely on a generalized Lions' concentration compactness on varying spaces and on rigidity results of Sobolev inequalities on singular spaces. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
2024
440
109521
10.1016/j.aim.2024.109521
https://arxiv.org/abs/2210.00636
Nobili, Francesco; Violo, Ivan Yuri
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870824000367-main.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 958.57 kB
Formato Adobe PDF
958.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact