We prove the Pleijel theorem in non-collapsed RCD spaces, pro-viding an asymptotic upper bound on the number of nodal domains of Lapla-cian eigenfunctions. As a consequence, we obtain that the Courant nodal domain theorem holds except at most for a finite number of eigenvalues. More in general, we show that the same result is valid for Neumann (resp. Dirichlet) eigenfunctions on uniform domains (resp. bounded open sets). This is new even in the Euclidean space, where the Pleijel theorem in the Neumann case was open under low boundary-regularity.

Pleijel nodal domain theorem in non-smooth setting / De Ponti, Nicolò; Farinelli, Sara; Violo, Ivan Yuri. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. SERIES B. - ISSN 2330-0000. - 11:32(2024), pp. 1138-1182. [10.1090/btran/196]

Pleijel nodal domain theorem in non-smooth setting

Farinelli, Sara;Violo, Ivan Yuri
2024-01-01

Abstract

We prove the Pleijel theorem in non-collapsed RCD spaces, pro-viding an asymptotic upper bound on the number of nodal domains of Lapla-cian eigenfunctions. As a consequence, we obtain that the Courant nodal domain theorem holds except at most for a finite number of eigenvalues. More in general, we show that the same result is valid for Neumann (resp. Dirichlet) eigenfunctions on uniform domains (resp. bounded open sets). This is new even in the Euclidean space, where the Pleijel theorem in the Neumann case was open under low boundary-regularity.
2024
11
32
1138
1182
10.1090/btran/196
https://arxiv.org/abs/2307.13983
De Ponti, Nicolò; Farinelli, Sara; Violo, Ivan Yuri
File in questo prodotto:
File Dimensione Formato  
S2330-0000-2024-00196-6.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 594.39 kB
Formato Adobe PDF
594.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact