We extend the result of Kowalczyk, Martel, and Mu & ntilde;oz [J. Eur. Math. Soc. (JEMS), 24 (2022), pp. 2133-2167] on the existence, in the context of spatially even solutions, of asymptotic stability on a center hypersurface at the soliton of the defocusing power nonlinear Klein-Gordon equation with p>3 , to the case 2 >= p>(5)/(3) . The result is attained performing new and refined estimates that allow us to close the argument for power law in the range 2 >= p>(5)/(3) .
On Asymptotic Stability on a Center Hypersurface at the Soliton for Even Solutions of the Nonlinear Klein–Gordon Equation When 2 ≥p > 5/3 / Cuccagna, Scipio; Maeda, Masaya; Murgante, Federico; Scrobogna, Stefano. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 56:4(2024), pp. 5445-5473. [10.1137/23m1590871]
On Asymptotic Stability on a Center Hypersurface at the Soliton for Even Solutions of the Nonlinear Klein–Gordon Equation When 2 ≥p > 5/3
Murgante, Federico;
2024-01-01
Abstract
We extend the result of Kowalczyk, Martel, and Mu & ntilde;oz [J. Eur. Math. Soc. (JEMS), 24 (2022), pp. 2133-2167] on the existence, in the context of spatially even solutions, of asymptotic stability on a center hypersurface at the soliton of the defocusing power nonlinear Klein-Gordon equation with p>3 , to the case 2 >= p>(5)/(3) . The result is attained performing new and refined estimates that allow us to close the argument for power law in the range 2 >= p>(5)/(3) .File | Dimensione | Formato | |
---|---|---|---|
23m1590871.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
604.23 kB
Formato
Adobe PDF
|
604.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.