This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications. We base our architecture on a novel neural network layer developed in this work, the graph feedforward network, which extends the concept of feedforward networks to graph-structured data by creating a direct link between the weights of a neural network and the nodes of a mesh, enhancing the interpretability of the network. We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parameterised partial differential equations. We show that this extension comes with provable guarantees on the performance via error bounds. The capabilities of the proposed methodology are tested on three challenging benchmarks, including advection-dominated phenomena and problems with a high-dimensional parameter space. The method results in a more lightweight and highly flexible strategy when compared to state-of-the-art models, while showing excellent generalisation performance in both single fidelity and multifidelity scenarios.

GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications / Morrison, Oisín M.; Pichi, Federico; Hesthaven, Jan S.. - In: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. - ISSN 0045-7825. - 432:(2024). [10.1016/j.cma.2024.117458]

GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications

Pichi, Federico
;
2024-01-01

Abstract

This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications. We base our architecture on a novel neural network layer developed in this work, the graph feedforward network, which extends the concept of feedforward networks to graph-structured data by creating a direct link between the weights of a neural network and the nodes of a mesh, enhancing the interpretability of the network. We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parameterised partial differential equations. We show that this extension comes with provable guarantees on the performance via error bounds. The capabilities of the proposed methodology are tested on three challenging benchmarks, including advection-dominated phenomena and problems with a high-dimensional parameter space. The method results in a more lightweight and highly flexible strategy when compared to state-of-the-art models, while showing excellent generalisation performance in both single fidelity and multifidelity scenarios.
2024
432
117458
https://arxiv.org/abs/2406.03569
Morrison, Oisín M.; Pichi, Federico; Hesthaven, Jan S.
File in questo prodotto:
File Dimensione Formato  
2406.03569v1_compressed.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 7.4 MB
Formato Adobe PDF
7.4 MB Adobe PDF Visualizza/Apri
2024_MorrisonPichi_compressed_compressed-1-16.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 548.23 kB
Formato Adobe PDF
548.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2024_MorrisonPichi_compressed_compressed-17-32-1-3.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2024_MorrisonPichi_compressed_compressed-17-32-4-10.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 9.82 MB
Formato Adobe PDF
9.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2024_MorrisonPichi_compressed_compressed-17-32-11-16.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 178.96 kB
Formato Adobe PDF
178.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact